HYDRAULIC RESISTANCES AND HEAT EMISSION IN
THE STABILIZED FLOW OF NON-NEWTONIAN FLUIDS
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Velocity fields, hydraulic resistances, and heat emission coefficients are considered for
the laminar flow of structurally viscous fluids with exponential flow law, extended also to
a medium with a significant appearance of elastic properties. Methods of an experimental
investigation of the hydrodynamics and heat exchange of non-Newtonian fluids are dis-
cussed.

1. Generalized Exponential Flow Law

Mathematical physics models of flowing media are constructed in modern hydrodynamics by means
of a set of macroscopic properties. Hence, diverse flow domains, or a different formulation in studying
some aspects of the given flow, can be described by different mathematical models, starting from the
principle of greatest simplicity in describing the primary aspect of the considered problem. Thus, for
a sufficiently rapid unbounded fluid flow around a solid body, the pressure distribution along the body
outline is usually described well enough by the Euler ideal fluid model, which possesses just one essential
physical property, the density p. At the same time, the aerodynamic drag and stream parameter distri-
bution (velocity, temperature, impurity concentration) in the direct neighborhood of the body depend es-
sentially on at least one property of the medium, the dynamic viscosity p.

A fluid with viscosity independent of the flow kinematics is called Newtonian. An ideal gas is 2 com-
pletely Newtonian fluid since its viscosity depends only on the thermodynamic state parameters and is not
related to the general translational gas motion. All other real, flowing media are subject to the Newtonian
friction law in either a definite range of the flow parameters (for a number of media, in all cases of practi-
cal interest), or always manifest a dependence of the viscosity on the flow and offer resistance to not only
the tangential but also the normal stresses. The whole set of such real media are usually called non-
Newtonian fluids. But namely the diversity of the properties and the multiplicity of such media of most
diverse chemical nature urgently demand some sufficiently simple methods of description, while never-
theless retaining the basic physical meaning of the phenomenon (including passage to the limit to a New-
tonian medium).

An exponential relationship between the flow and the friction is apparently sufficiently flexible and
exact for the description of the quite numerous class of non~Newtonian media. We called a corresponding
class of media which did not manifest elastic properties, structurally viscous. Its hydrodynamic and
thermokinetic dependences are considered concisely below. Later the possibility is shown of extending this
law to viscoelastic media as well.

The exponential rheological relationship for structurally viscous fluids which have no noticeable
elastic properties is

¢* = exp(— 7%, 1)
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Fig. 1, The dependence ¢T(T) for a number of viscoelastic fluids: 1) linear polyethylene melt, t = 190°C,
P =5, n=-—4 [2]; 2) Knee Joint (synovia of the knee joint), =0, n =—2 [3]; 3) polyethylene melt prior

to the beginning of rupture, t = 190°C, ¥ =4, n = -5 [2]; 4) 15% solution of polyisobutylene in decalin, t
=50°C, ¢ =3, n=-2 [4]; 5) the same, t = 30°C, =3, n =-2 [4]; 6) 3% solution polyacrylamide in water,
author's measurements, ¥ =0, n =—-1, o1, m?®/N-sec; T, N/ m?.

Fig. 2. Velocity distribution for laminar flow: 1) B = 0 (Newtonian fluid); for B = 0.6: 2) A =0.1; 3) 0.5;

4)1; 5) 3.3; for B=-1.5: 6) A =0.1; 7) 0.5; 8) 1; 9) 3.3; for B =0.9: 10) A =0.1; 11) 0.5; 12) 1; 13) 2; for
B =-10: 14) A =0.1; 15) 1; 16) 2. :

where
(P*= ?—% T* =8 !T'—Tll

Pu— %0 P — P
For small values of 7*, the flow dependencé on the shear stress can be approximated by a linear law
@ =@+ 0t — 1. (2)

If the liquid possesses noticeable elastic properties and the shear velocity is such that the difference
between the normal stresses exceeds the tangential, the character of the dependence ¢ (1) changes. The
flow increases rapidly as T grows, and the ¢(r) curves are characterized by a noticeable concavity relative
to the vertical axis.

It can be assumed that an anisotropy in the normal stresses, which occurs as the shear velocity in-
creases, exerts influence on the magnitude of the flow of viscoelastic fluids. Since the majority of tests
shows that the normal stresses acting in 2 plane perpendicular to the flow direction Py, and P;; are equal
or nearly so in magnitude, the degree of anisotropy in the normal stresses can be characterized by the
quantity '

Py — Py~ Py — Py,

As the processing of experimental results shows [2-4], the change in the flow of viscoelastic fluids

can be described by an equation of the type (2) if the quantity

T =14 (P, — P,), (3)

i.e., the relationship
14
(Pr'—‘—T‘"z‘(Po—f—e-,T (4)

is used in place of 7.

To illustrate this situation, flow curves of a number of fluids possessing high elasticity are repre~
sented in Fig. 1 in ¢(T) coordinates.

The velocity profiles in channels of simplest shape, the hydraulic drag and heat emission coefficients
for fluids possessing the linear flow law (2) have been computed earlier [1, 7].
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Such fluids can evidently be considered as a linear subclass of the more general class of media with
an exponential flow law.

2. Heat Exchange and Hydraulic Drag for a Stabilized

Laminar Flow of Fluids with an Exponential Flow Law

Let us consider fluid flow in a circular tube. Integration of the equation dW/dr = —¢7y£ under the
condition 7; = 0 results in the following velocity distribution law over the tube cross section:

ny B _ LY exp(— RS
SW(§)20.5<1~§>+A[exp( A (145 ) — e EA)(HAH

(5)
|14 B B 1,5 3 3
0256 7 12 ‘A—[e"*’ = A)(O'*’““ At EYE

(]

1
where W =2 Y W ()£d¢ is the mean stream velocity,
1]

3} —_
A:~——-—Tw —fa.nClB==————‘—WQl= LU .

@ %0 P
The results of computing the velocity profiles for pseudoplastic (B > 0) and dilatant (B < 0) fluids
are represented in Fig. 2. For pseudoplastic fluids the velocity profile is compressed for A < 1, while
for A > 1 part of the section abutting the wall is occupied by a fluid with practically constant viscosity
(*the second Newtonian viscosity"), and the profile again starts to approximate the parabolic. For dilatant
fluids compression of the profile starts at rather higher values of the parameter A.

The dimensionless heat emission coefficient on the stabilized heat exchange section is determined
under the condition of a uniform heat supply (8t/8x ~ const) by the relationship [5, 6]

t
1 (| wedE)? -1
Nu:lizg__(bs : ) dg} : (6)
0

The results of computations performed using an electronic computer are represented in Fig. 3. The
heat emission coefficients for pseudoplastic fluids are somewhat higher than for Newtonian fluids, and
lower for dilatant fluids. There are extremal values on the curves of the dependence Nu(A) which corre~
spond to those values of A for which the fluid flow practically ceases to vary. However, the difference
between the heat emission coefficients of ordinary and non-Newtonian fluids is quite insignificant in the
whole range of parameter variation. Using the relationship (5), the hydraulic drag coefficient

— 8TW
£= Rz
can be represented as
16(1—B
tFRep = B, B (A 0)5 5 3 _3\]’ @
0.25 —6 — = — 52 42
25 —6 5+ A[exp( )( + FA3>]

where Rey = @gpW - 2-Ry. If the parameter A is transformed into A =B¢/8, where 8 = [0/ (¢ — @g)]0W?,
then (7) is rewritten as follows:

Btfom—as (] oo [~ s s () 0 (] 0 0

and it can be solved for £. The results of a computation obtained by using an electronic computer are
presented in Fig. 4. It is seen from this graph that the non-Newtonian properties of fluids alter the hy-
draulic drag coefficient essentially for small Re; numbers, while the influence of variable viscosity practi-
cally ceases to be felt as Re; — Regp.

685



0o e,

O o
V.
rd
Séz
N
Nl
b [ %

prs
N\
qﬁh

L
, |
41 —— R > ’ Q\]

9
a5 / 5 2 25 7 A P’z 4 6610% 2 46 Re,
Fig. 3 Fig. 4

Fig. 3. Heat emission coefficient for laminar flow: 1) Nu =4.36; 2) B =0.2; 3) 0.6;
4) 0.9; 5) —1.5; 6) —4.

Fig. 4. Hydraulic drag coefficient: 1) B = 0 (Newtonian fluid); 2) 3 =1, B=0.6; 3) 8
=2,B=06;4)8=1,B=08;53=2,B=0.8;6)8=1,B=0978=4,B=0.9;
8)£8=1,B=~-¢;98 =1, B=-19,

For the values B = 1-4, the hydraulic drag coefficient at B = 0.5-0.9 can be computed by means of the
interpolation formula

1g(100§)=y0—"i"—:%§9§- (lgRe,— 1), (9
where
0.958
= 2.806 — B2,
Yo 0.7

The error in the computation will hence not exceed 1-2%,

3. Steady Laminar Flow of Viscoelastic Fluids

We consider a flow steady at such a distance from the channel entrance that the stress state of the
fluid and the velocity profile can be considered completely stabilized.

If the relation between the normal and tangential stresses can be expressed by simple dependences
in the shear velocity range under consideration, then the velocity profiles are easily determined by inte-
grating (4).

For the linear viscoelasticity domain characterized by the relationship
O/T = Yer

the integration of (4) results in the following expression for the velocity profile in a circular tube:

2 0,7
1 —g? W (] 91_3
v, ety e (1 4 veX E)- (10)
STy T 4 0,
174 14— =W (14,
+5 . I+

This expression differs from that obtained earlier for structuraily viscous fiuids [1] in that the com-
plex 67y/ ¢y is here replaced by the quantity (677w/ @)@ + V).
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Fig. 5. Velocity profiles for a 3% polyacrylamide solution in water: 1)
velocity profile for Newtonian fluids; 2) computed velocity profile for a 3%
polyacrylamide solution in water for (61/ @)1 +ve) = 2.3; 3) test values
of the velocity for a 3% polyacrylamide solution in water.

Fig. 6 Test results on the heat exchange for a 3% solution of polyacryl-
amide in water: 1) computational curve for a Newtonian fluid; 2) test results
on heat emission to the stream of a 3% polyacrylamide solution in water.

Correspondingly, the expression

8ty 5 1288, 05 1
_ 8w 5[ 1286, \00 (11)
KN 2 [( i 5Reo) } T

where

Re, = g,DpWandp, — -2 i

0

y

will be valid for the hydraulic drag coefficient.

Integrating (4) results also in comparatively simple expressions for the cases when the relation-
ship between the normal and tangential stresses is more complex, for example:

o/t=A-+ Bv (12)
or
T* = exp (——— G*). (13)
Ve

In practice, however, cases are quite often encountered when the quantitative characteristics of the
elastic properties of the fluid are not known, and only its flow curve has been measured. A T wer-law de-

pendence of the type 7 = kWR, which is physically explicitly incorrect {11, is most often used o approximate
the flow curve.

Interpolation formulas of the type

9=+ ) 0,7" (14)

n=l

not only satisfy the limit passage conditions sufficiently correctly from the physical and mathematical view-
points, but are also sufficiently convenient from the purely computational viewpoint.

It should be noted that the velocity profiles are made flatter as the elastic properties of the fluid grow
(the quantity ye), and the velocity gradient at the wall increases.

Using the relationship (14), the heat emission coefficient of non-Newtonian fluids for the warm initial
section of a tube can be determined by means of the formula [7]
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Fig. 7. Hydraulic drag coefficient in a tube for a 0.02% polyethylene oxide solution:

1) fresh solution; 2) solution subjected to destruction.

Fig. 8. Hydraulic drag coefficient in a tube for a 0.015% polyacrylamide solution: 1)
fresh solution; 2) solution subjected to destruction; 3) water.

Nu = Nu, 4, (15)
where
S 4 ) -1
= {1 E L qn (1 —r ) . (16)
1 ( * Po A ) g L nt+4 g v

n=1

As the tangential shear stress grows, the quantity x increases, however it exceeds 1 insignificantly.
Thus, for pseudoplastic fluids with a linear flow law x — 1.25 as 7 — «, while ¥ — 1.5 in the domain of
the quadratic flow law. Correspondingly, the ultimate increase in the heat emission coefficients is just 8
and 15% as compared with their values for Newtonian fluids.

4. Measurement of the Velocities, Drag Coefficients, and

Heat Emission Coefficients in Non-Newtonian Fluid Streams

Measurement of the velocity profiles in non-Newtonian fluid streams is complicated by 2 number
of factors. The fluid viscoelastic properties affect the operation of the total head tube, and it is not clear
at present how to interpret the readings obtained by using them in either the laminar or turbulent flow
regions. Attempts to use a thermoanemometer to investigate turbulent flow of weakly concentrated polymer
solutions have also been unsuccessful.

We used optical flow-visualization methods to investigate the velocity fields in structurally viscous
and viscoelastic fluid streams. In the first series of tests the fluid velocities were measured by an optico-
mechanical device [8], and in subsequent experiments by using an electronic stroboscope for hydrodynamic
investigations.

One of the measured velocity profiles is represented in Fig. 5 for the laminar flow of a 3% poly-
acrylamide solution possessing considerable elastic properties. Measurements of these properties by using
an instrument of cone—plane type showed that the difference between the normal stresses exceeded the
tangential stresses at the wall approximately one- to twofold at the shear velocities holding in the experi~
ments. The experimental apparatus used in this series of tests was two tanks connected by a fiat channel
with 1:10 side ratio. The tangential stresses at the channel wall varied between 10 and 110 N/ m?, which
corresponded to flow velocities between 7.4 - 104 and 7.1 -10~% m/sec. The velocity profiles obtained
agreed with the computed ones, and in contrast to [9, 10], no slip was noted near the wall in the tests.

The results of heat-exchange tests in the laminar flow mode are presented in Fig. 6. The heat emis-
sion coefficients of a 1% polyacrylamide solution were measured in a circular tube of 1 cm diameter and
90 cm length under the condition of uniform heat supply to the tube surface. The prepared polyacrylamide
solution was poured into a large tank from which it was pumped through the working section under air pres-
sure. The fluid discharge was measured by a volume method. The fluid temperature at the entrance to the
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working section, the temperature along the length of the heated tube, and the temperature drop in the heat
insulation in the working section were all measured. Fluid heating in the working section is determined
by computations taking account of the heat losses of the heater.

The tests were performed for different values of the heat flux so that the heat emission coefficients
could be determined under quasiisothermal conditions by extrapolation to zero heat flux. The results of
tests for quasiisothermal conditions are in good agreement with the computational relationship (15). We
noted a similar agreement earlier in an investigation of the heat emission to carboxymethylcellulose
solutions flowing in a rectangular channel [11}. It should be noted that the influence of the non-Newtonian
fluid properties on the heat emission coefficient is weaker than the change in viscosity over the channel
cross section because of the heat supply.

An electronic stroboscope was used for hydrodynamic investigations [12, 13] to obtain velocity pro-
files for turbulent non-Newtonian fluid flow, Weakly concentrated high-polymer solutions were selected
for the investigations: carboxymethylecellulose (CMC), desoxyribonucleic acid (DNA), polyacrylamide
(PAM), and polyethylene oxide.

It has been shown in [14] that the introduction of polymer admixtures exerts the greatest influence
on the intermediate stream domain. Subsegquent measurements with polyethylene oxide solutions confirmed
the conclusions made earlier. An increase in the size of the intermediate domain, of the magnitude of
the velocity on its boundary with the domain of completely developed turbulent flow, should result in a re-
duction in the hydraulic drag and heat emission coefficients.

The results of measuring the hydraulic drag during circulation of polyethylene oxide solutions (0.02%)
in a closed loop are represented in Fig. 7. The tests were conducted ina d =8 mm circular fube. The
lower line on the graph corresponds to the first series of tests with fresh polyethylene oxide solution.

The fluid discharge in this series of tests was gradually increased from values corresponding to the laminar
flow mode to the highest possible. Rapid destruction of the solution started at the high flow speeds, and as
the discharge was reduced the hydraulic drag coefficients were ranged along the upper branch of the curve,
where addition of a polymer for low Reynolds numbers in the turbulent flow domain already has practically
no effect on the hydraulic drag of the stream.

Presented in Fig. 8 are results of measuring the hydraulic drag in polyacrylamide solutions of
0.015% concentration., The data obtained differ somewhat from the preceding in that the transition from
the laminar to the turbulent flow mode is rather stretched out, the destruction of the solution is less, and
the introduction of an admixture is felt in the turbulent mode even at low Re numbers.

The results of investigating the pulsating velocity profiles over the whole channel cross section (in-
cluding even the viscous sublayer) were described partially in [14] and were discussed in detail in a paper
published in this issue (p. 758).

A series of tests was conducted to determine the heat emission coefficients in a turbulent flow of
polyethylene oxide and polyacrylamide solutions. The tests showed that the coefficients of heat emission
to a siream of solufion can be severalfold lower than to a stream of water for the same values of the Re

and Pr numbers. The reason for this is the inerease in thermal resistance of the intermediate stream
domain.

NOTATION
T = Tt is the tangential shear stress, N/ m?;
Ty is the tangential shear stress at the wall, N/m?;
@ is the flow at 7 — 0, m*/N- sec;
Goo is the flow at T — «, m?/N- sec;
9 is the coefficient of instability of the structure, m?/N?- sec;
T is the limit shear stress at which non-Newtonian properties start to appear in the

0y =Py — Py,
0y =Py — Py

E=r/R

fluid, N/ m?;

are the first and second difference in the normal stresses, respectively, N/ m?;
is the velocity gradient, sec™;

is the tube radius, m;

is the dimensionless distance from the wall;
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Rey is the Reynolds number determined at zero flow;
Regy is the critical Reynolds number;
Ye is the magnitude of highly elastic deformation;
X is the coefficient taking account of the structural viscous properties of the medium;
Nu, is the heat emission coefficient for Newtonian fluids;
Pr is the Prandtl number;
¢ is the hydraulic drag coefficient;
= (Tor — T /Ters
o* =0/ Tops
N is the instability coefficient of the elastic structure;
Ter is the critical value of the tangential shear stress.
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